
Abstract. For the 102 atoms from He to Lr in their
ground states, the Hartree–Fock interelectronic angle
densities, A�(h�12), in momentum space are reported,
where h�12 is the angle between the momentum vectors p1
and p2 of two electrons. In the first three atoms, He–Be,
A�(h�12) is found to be uniform independent of h�12, while
in the remaining 99 atoms, A�(h�12) is larger for a large h�12
than for a small h�12. Accordingly, the average inter-
electronic angles in momentum space are 90� precisely
for the three atoms and greater than 90� for the 99
atoms.
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Introduction and definitions

In the study of electron correlations in few-electron
atoms, the interelectronic angle densities were in-
troduced [1, 2, 3, 4, 5, 6] to clarify the distribution of the
angle spanned by the position or momentum vectors of
two electrons. In position space, the interelectronic angle
density, A(h12), is defined [7] by

A h12ð Þ � sin h12ð Þ�1
Z

dr01dr
0
2d h12 � h012
� �

C r01; r
0
2

� �
; ð1Þ

where d(x) is the Dirac delta function and h012 is the angle
between the vectors r01 and r02. For a normalized
N-electron (N ‡ 2) wave function Y(x1,...,xN), the spin-
less two-electron density function G(r1, r2) in Eq. (1) is
given by

C r1; r2ð Þ � N N � 1ð Þ
2

Z
ds1ds2dx3:::dxN jW x1; :::; xNð Þj2;

ð2Þ

where xi ” (ri, si) is the combined position-spin co-
ordinates of the electron i. The function A(h12) is the
probability density function that the interelectronic an-
gle hij (0 £ hij £ p) subtended by the position vectors ri
and rj of any two electrons i and j becomes h12, and is
normalized as

Zp

0

dh12 sin h12A h12ð Þ ¼ N N � 1ð Þ
2

; ð3Þ

where the value on the right-hand side is the number of
electron pairs. Note that the interelectronic angle in
position space is apparently dependent on the location
of the coordinate origin, though the nuclear position is a
natural choice in atomic systems.

A(h12) is a useful tool to know explicitly the dis-
tribution of the interelectronic angle in atoms and
molecules. Nevertheless, the examination of A(h12) in
the literature is very limited. Only for He and Be
atoms and some of their isoelectronic ions was the
correlation contribution in A(h12) studied in an ad hoc
manner [1, 2, 3]. Very recently, however, it has been
shown [7] that A(h12) can be expressed as a linear
combination of Legendre polynomials Pn (cosh12) in
general:

A h12ð Þ ¼
X1
n¼0

2nþ 1

2
qnPn cos h12ð Þ; ð4Þ

and

qn ¼
Z

dr1dr2Pn cos h12ð ÞC r1; r2ð Þ: ð5ÞCorrespondence to: T. Koga
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The Hartree–Fock limit densities have been reported
[7] for the 102 atoms from He (Z=2) to Lr (Z=103)
in their ground states, where Z stands for atomic
number.

The interelectronic angle density A�(h�12) is defined in
momentum space as well. Corresponding to Eqs. (1) and
(3), we have

�AA �hh12
� �

� sin �hh12
� ��1Z

dp01dp
0
2d

�hh12 � �hh012
� �

�CC p01; p
0
2

� �
ð6Þ

and

Zp

0

d�hh12 sin �hh12�AA �hh12
� �

¼ N N � 1ð Þ
2

; ð7Þ

where h�12 is the angle between the momentum vectors
p1 and p2 of two electrons and G�(p1, p2) is the spinless
two-electron density function associated with a mo-
mentum-space wave function F(y1,...,yN), where
yi ” (pi, si) is the combined momentum-spin co-
ordinates of electron i. In contrast to its position-space
counterpart, the interelectronic angle in momentum
space has no apparent origin-dependence under the
zero translation condition of a system. In the present
paper, we study the momentum-space interelectronic
angle densities for the 102 ground-state atoms from He
to Lr within the Hartree–Fock framework. The math-
ematical structure of the density A�(h�12) and our com-
putational procedures are outlined in Sect. 2. The
results for the atoms are presented and discussed in
Sect. 3 in comparison with their position-space coun-
terparts. Hartree atomic units are used.

Theoretical and computational outlines

The mathematical structure of the interelectronic angle
density A�(h�12) in momentum space is isomorphic to that
in position space. Following the formalism for the po-
sition-space density A(h12) in Ref. [7], we substitute two
relations,

d
�
�hh� �hh

0� ¼ d
�
cos �hh� cos �hh

0�
sin �hh; ð8aÞ

d x� x0ð Þ ¼
X1
n¼0

2nþ 1

2
Pn xð ÞPn x0ð Þ; ð8bÞ

into Eq. (6), where Pn(x) are the Legendre polynomials.
We then obtain in general that

�AA �hh12
� �

¼
X1
n¼0

2nþ 1

2
�qqnPn cos �hh12

� �
; ð9Þ

where the expansion coefficients q�n are given by

�qqn ¼ Pn cos �hh12
� �� �

�
Z

dp1dp2Pn cos �hh12
� �

�CC p1; p2ð Þ:

ð10Þ

A particular case of Eq. (10) is q�0=N(N)1)/2, because
P0(x)=1. Therefore, the first term of A�(h�12) in Eq. (9) is
a constant, N(N)1)/4, and gives a uniform distribution
independent of h�12. The remaining terms with n ‡ 1 are
responsible for the h�12 dependence of the interelectronic
angle density A�(h�12).

For a determinantal wave function F(y1,...,yN) com-
posed of a set of orthonormal spin-orbitals /a(p)ga(s),
the two-electron density function G�(p1, p2) is given by

�CC p1; p2ð Þ ¼
X

a;b;c;d

Cabcd /�a p1ð Þ/�b p2ð Þ/c p1ð Þ/d p2ð Þ; ð11Þ

where Cabcd are expansion coefficients. Then the most
general two-electron integral occurring in the calculation
of q�n=<Pn(cosh�12)> is

abjPn cos �hh12
� �

jcd
� �

�
Z

dp1dp2 /�a p1ð Þ/�b p2ð Þ

Pn cos �hh12
� �

/c p1ð Þ/d p2ð Þ;
ð12Þ

which includes four different momentum orbitals: /a,
/b, /c, and /d. In atomic systems, we can generally
assume that the spatial function /a(p) is a product of
the radial Pa pð Þ � Pnala pð Þ and spherical harmonic
Ya Xð Þ � Ylama Xð Þ functions, where (p, W) with W ” (h, /)
is the polar coordinates of the vector p, and na, la, and
ma are the principal, azimuthal, and magnetic quantum
numbers, respectively, of the function /a(p). Then,
Eq. (12) reduces to

abjPn cos �hh12
� �

jcd
� �

¼ �SS a; cð Þ�SS b; dð ÞAn a; b; c; dð Þ; ð13aÞ

where S� is the radial overlap integral in momentum
space,

�SS a; bð Þ �
Z 1
0

dpp2P �a pð ÞPb pð Þ ¼ �SS� b; að Þ; ð13bÞ

and An is the angular integral,

An a; b; c; dð Þ �
Z

dX1dX2Y �a X1ð ÞY �b X2ð ÞPn cos �hh12
� �

Yc X1ð ÞYd X2ð Þ: ð13cÞ

A special case of Eq. (13b) for a=b is S�(a, a)=1. The
two-electron angular integral (Eq. 13c) was calculated
[7] to be

An a; b; c; dð Þ ¼ dmaþmb;mcþmd cn a; cð Þcn d; bð Þ; ð14Þ

where cn(a, b) ” cn(lama, lbmb) is the Condon–Shortley
parameter [8, 9]. The relation given in Eq. (13a) is
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identical with that for position space [7], if the integral
S�(a, b) is replaced with the corresponding overlap in-
tegral S(a, b) between the radial functions Ra(r) and
Rb(r) in position space. Since cn(a, b) vanishes unless
n+la+lc is an even integer, n+lb+ld is an even integer,
|la)lc| £ n £ la+lc, and |lb)ld| £ n £ lb+ld, the summa-
tion in Eq. (9) runs over a finite number of n in the case
of atoms.

In a particular case of Hartree–Fock wave functions,
only two types of integrals <ab|Pn(cosh�12)|ab> and
<ab|Pn(cosh�12)|ba> appear. From Eqs. (13a, 13b, 13c)
and (14), we immediately find that

abjPnðcos �hh12Þjab
� �

¼ an a; bð Þ ð15aÞ

and

abjPnðcos �hh12Þjba
� �

¼ j�SS a; bð Þj2bn a; bð Þ ð15bÞ

for the direct and exchange terms, respectively, where an

(a, b) ” cn(a, a)cn(b, b) and bn (a, b) ” [cn(a, b)]2 are
the Condon–Shortley parameters [8, 9]. Because of the
properties of cn (a, b), Eq. (15a) has nonzero values only
for even integers n ranging from 0 to min(2la, 2lb), while
Eq. (15b) has nonzero values only for every other
integer n between |la)lb| and la+lb.

The experimental ground electronic configurations
and LS terms [10, 11] were considered for all the 102
atoms from He (Z=2) to Lr (Z=103). For these states,
the position-space radial functions Ra rð Þ � Rnala rð Þ were
first generated by the numerical Hartree–Fock method
based on a modified version of the MCHF72 program
[12]. The radial functions Pa(p) in momentum space
were then obtained by the Hankel transformation of
Ra(r),

Pa pð Þ ¼ �ið Þla 2=pð Þ1=2
Z1

0

drr2jla prð ÞRa rð Þ; ð16Þ

by using the algorithm of Talman [13], where jl(x) is the
spherical Bessel function of the first kind. Finally, we
used Eq. (15a) and (15b) to compute the spin-orbital-
pair contributions to q�n=<Pn(cosh�12)>, where the
values of the Condon–Shortley parameters an(a, b)
and bn(a, b) were taken from Refs. [8, 9].

Results and discussion

The numerical results of nonzero q�n values are sum-
marized in Table 1 for the second to fifth period atoms
and in Table 2 for the sixth and seventh period atoms.
The q�0 value is not given, because it is N(N)1)/2, the
number of electron pairs. Owing to the nonvanishing
conditions of the Condon–Shortley parameters, the
maximal n of nonzero q�n is 2lmax or 2lmax)1, where lmax

is the largest azimuthal quantum number of occupied
orbitals in an atom. The first three atoms, He, Li, and

Be, do not appear in Table 1, since only s (l=0) orbitals
are occupied and all q�n, except q�0, vanish for these
atoms. We find in Tables 1 and 2 that the nonzero q�n are
negative for all n except n=0. For a given Z, the mag-
nitudes |q�n| decrease with increasing n, while for a given
n, |q�n| increase with increasing Z in general. These trends
of q�n are similar to those [7] of qn in position space. Some
atoms with analogous valence electron configurations
have the same q�n value for the largest n, since it origi-
nates from the contribution of two electrons in the
outermost subshell with lmax. In the case of n=2lmax,
moreover, we obtain an interesting equality qn=q�n

Table 1. Nonzero q�n values for the atoms with Z=5–54. Note that
q�0=N(N)1)/2. For Z=2–4, only q�0 is nonvanishing

Z q�1 q�2 q�3 q�4

5 )0.293820
6 )0.585041 )0.200000
7 )0.876746 )0.600000
8 )1.190083 )0.600000
9 )1.498162 )0.800000
10 )1.803165 )1.200000
11 )1.780045 )1.200000
12 )1.785973 )1.200000
13 )2.089513 )1.200000
14 )2.377943 )1.400000
15 )2.660101 )1.800000
16 )2.961108 )1.800000
17 )3.255228 )2.000000
18 )3.545122 )2.400000
19 )3.537362 )2.400000
20 )3.566188 )2.400000
21 )3.956035 )2.597810 )0.253898
22 )4.350563 )2.956668 )0.510378 )0.020408
23 )4.743997 )3.294869 )0.765689 )0.163265
24 )5.491332 )4.105099 )1.267408 )0.714286
25 )5.529230 )4.093433 )1.274347 )0.714286
26 )5.923070 )4.292042 )1.528882 )0.714286
27 )6.316490 )4.653074 )1.783049 )0.734694
28 )6.709927 )4.993680 )2.037100 )0.877551
29 )7.459476 )5.799393 )2.539709 )1.428571
30 )7.496720 )5.796931 )2.544882 )1.428571
31 )7.805253 )5.790170 )2.536707 )1.428571
32 )8.086682 )5.986679 )2.525466 )1.428571
33 )8.358507 )6.385435 )2.515404 )1.428571
34 )8.648367 )6.385655 )2.507305 )1.428571
35 )8.933105 )6.586699 )2.501798 )1.428571
36 )9.215469 )6.988210 )2.498718 )1.428571
37 )9.209323 )6.991310 )2.495210 )1.428571
38 )9.244454 )6.994686 )2.492336 )1.428571
39 )9.620929 )7.195034 )2.736258 )1.428571
40 )10.015798 )7.555178 )2.992427 )1.448980
41 )10.739199 )8.218369 )3.486985 )1.857143
42 )11.143569 )8.698316 )3.747922 )2.142857
43 )11.191755 )8.683898 )3.754638 )2.142857
44 )11.927315 )9.240620 )4.257094 )2.163265
45 )12.318494 )9.572003 )4.510674 )2.306122
46 )13.053938 )10.366066 )5.005965 )2.857143
47 )13.097558 )10.356850 )5.014862 )2.857143
48 )13.128254 )10.367309 )5.005995 )2.857143
49 )13.425731 )10.362787 )4.991489 )2.857143
50 )13.702107 )10.561133 )4.977967 )2.857143
51 )13.971521 )10.961494 )4.967543 )2.857143
52 )14.260125 )10.963238 )4.959839 )2.857143
53 )14.544350 )11.165747 )4.955635 )2.857143
54 )14.826767 )11.568709 )4.954644 )2.857143
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between the expansion coefficients in position and
momentum spaces, because S�(a, b)=1 in Eq. (15b).

The interelectronic angle densities A�(h�12) in mo-
mentum space are exemplified in Fig. 1 for the five rare-
gas atoms Ne, Ar, Kr, Xe, and Rn, where A�(h�12) are
renormalized to unity, instead of N(N)1)/2, to compare
the atoms with different numbers of electron pairs.
Moreover, we have excluded in the figure the contribu-
tion from the first P0(cosh�12)=1 term of Eq. (9) to
clarify the deformation of A�(h�12) from the uniform dis-
tribution. In Fig. 1, we find that the interelectronic angle
density is small for a smaller h�12 and large for a larger h�12
in all the atoms, though the degree of the deformation
decreases as Z increases. Thus two electrons in an atom

have a tendency to have opposite momenta without
exceptions. The minimum in A�(h�12) is observed at
h�12=0� for all five atoms, while the maximum is at
h�12=107, 107, 122, 127, and 134� for the Ne, Ar, Kr, Xe,
and Rn atoms, respectively. In the Hartree–Fock ap-
proximation, the characteristics of A�(h�12) are very simi-
lar to those of its position-space partner A(h12) reported
in Ref. [7].

We have also calculated the average interelectronic
angle <h�12> in momentum space, defined by

�hh12
� �

� 2

N N � 1ð Þ

Zp

0

d�hh12 sin �hh12�hh12�AA �hh12
� �

: ð17Þ

Table 2. Nonzero q�n values for
the atoms with Z=55–103.
Note that q�0=N(N)1)/2

Z q�1 q�2 q�3 q�4 q�5 q�6

55 )14.833830 )11.574825 )4.951470 )2.857143
56 )14.883720 )11.581513 )4.948723 )2.857143
57 )15.271724 )11.781072 )5.198418 )2.857143
58 )15.690254 )12.180940 )5.523809 )3.078977 )0.211151
59 )16.117360 )12.645644 )5.923305 )3.556748 )0.630802 )0.030020
60 )16.536653 )13.037325 )6.251738 )3.837863 )0.844552 )0.146571
61 )16.956194 )13.384455 )6.580323 )4.127238 )1.058248 )0.351416
62 )17.377743 )13.798167 )6.909791 )4.452447 )1.272764 )0.582751
63 )17.801269 )14.322899 )7.240111 )4.824503 )1.488103 )0.815851
64 )18.218355 )14.521777 )7.502908 )4.824481 )1.501686 )0.815851
65 )18.633461 )14.949894 )7.894715 )5.251656 )1.911223 )0.817617
66 )19.052299 )15.385533 )8.223188 )5.524504 )2.123957 )0.845871
67 )19.470984 )15.776674 )8.551615 )5.805622 )2.336527 )0.962421
68 )19.889475 )16.123321 )8.879977 )6.095010 )2.548921 )1.167267
69 )20.309029 )16.536591 )9.208796 )6.420227 )2.761756 )1.398601
70 )20.729967 )17.060928 )9.538206 )6.792293 )2.975196 )1.631702
71 )21.153070 )17.261735 )9.800900 )6.792537 )2.997539 )1.631702
72 )21.575575 )17.621762 )10.068414 )6.812313 )3.008954 )1.631702
73 )21.985572 )17.957416 )10.330599 )6.953992 )3.014192 )1.631702
74 )22.386375 )18.269998 )10.588524 )7.217859 )3.015849 )1.631702
75 )22.780425 )18.743162 )10.843237 )7.502065 )3.015456 )1.631702
76 )23.170062 )18.934535 )11.094969 )7.500604 )3.013954 )1.631702
77 )23.557081 )19.287446 )11.345525 )7.519667 )3.011902 )1.631702
78 )24.285941 )19.922981 )11.849146 )7.926496 )3.009764 )1.631702
79 )24.671286 )20.389676 )12.099780 )8.211165 )3.007655 )1.631702
80 )24.706852 )20.404638 )12.090512 )8.210435 )3.005541 )1.631702
81 )25.003313 )20.398004 )12.075948 )8.209961 )3.003538 )1.631702
82 )25.278687 )20.594559 )12.062415 )8.209697 )3.001649 )1.631702
83 )25.546790 )20.993546 )12.051991 )8.209614 )2.999883 )1.631702
84 )25.833541 )20.994308 )12.044223 )8.209667 )2.998244 )1.631702
85 )26.115904 )21.196243 )12.040107 )8.209857 )2.996726 )1.631702
86 )26.396511 )21.599003 )12.039433 )8.210162 )2.995326 )1.631702
87 )26.407311 )21.606323 )12.035712 )8.210450 )2.994053 )1.631702
88 )26.461998 )21.614799 )12.032311 )8.210765 )2.992890 )1.631702
89 )26.850155 )21.814649 )12.281243 )8.211062 )2.991929 )1.631702
90 )27.242698 )22.172551 )12.533783 )8.231779 )2.991107 )1.631702
91 )27.668937 )22.345188 )12.924823 )8.643340 )3.402876 )1.633468
92 )28.081998 )22.838509 )13.252631 )8.914681 )3.616814 )1.661722
93 )28.498799 )23.306308 )13.580645 )9.187007 )3.831567 )1.778272
94 )28.914628 )23.832328 )13.971341 )9.805041 )4.248665 )2.214452
95 )29.340322 )24.357324 )14.301657 )10.176908 )4.465692 )2.447552
96 )29.762605 )24.555059 )14.566156 )10.176843 )4.480084 )2.447552
97 )30.181023 )24.718931 )14.893328 )10.362194 )4.693828 )2.447552
98 )30.602418 )25.420125 )15.287433 )10.875830 )5.108672 )2.477573
99 )31.025363 )25.811153 )15.617015 )11.156454 )5.323903 )2.594123
100 )31.448386 )26.157621 )15.946677 )11.445299 )5.539085 )2.798969
101 )31.872178 )26.570618 )16.276660 )11.769903 )5.754564 )3.030303
102 )32.296745 )27.094571 )16.606945 )12.141276 )5.970349 )3.263403
103 )32.709188 )27.293082 )16.865878 )12.139765 )5.982070 )3.263403
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The results for the 102 atoms are plotted in Fig. 2 as a
function of Z. For the first three atoms with Z=2–4,
<h�12> is 90� precisely and the momentum vectors pi
and pj of two electrons are perpendicular in an average
sense. For the remaining 99 atoms, on the other hand,
the average angle <h�12> is always greater than 90�.
When Z increases from 5 to 103, <h�12> first increases,
has a maximum (92.9�) at Z=8, and then decreases
towards a minimum (90.5�) at Z=103. The Z-depen-
dence of <h�12> shows close parallelism with that of
<h12> in position space, except that <h12> has a
maximum (93.2�) at Z=7 [7].

As expected from the expansion coefficients q�n
summarized in Tables 1 and 2, the second
P1(cosh�12)=cosh�12 term in Eq. (9) gives a predominant
contribution to the deformation of the density A�(h�12)

from the uniformity (Fig. 1) and hence to the increase of
<h�12> from 90� (Fig. 2). A finer analysis shows that the
major contributions to the coefficient q�1=<cosh�12>
come from sp electron pairs in the same shell or in
neighboring shells, and the Z-dependence of <h�12> in
Fig. 2 is roughly explained by the relative significance of
these electron pairs in the possible N(N)1)/2 electron
pairs. In fact, the average angles <h�12> have a good
linear correlation with the ratios q�1/q�0.

The similarity observed in the Hartree–Fock ap-
proximation between the position-space and mo-
mentum-space quantities, qn and q�n, A(h12) and A�(h�12),
<h12> and <h�12>, has theoretical origin. As discussed
in the previous section, the Hartree–Fock coefficients qn
and q�n are the sums of the direct and exchange con-
tributions. The direct terms are determined solely by the

Fig. 1. The interelectronic angle densities
A�(h�12) in momentum space for the five rare-gas
atoms Ne, Ar, Kr, Xe, and Rn. The densities
are normalized to unity, instead of N(N)1)/2,
and the uniform contribution from the
P0(cosh�12)=1 term is excluded

Fig. 2. The average interelectronic angle
<h�12> in momentum space as a function of
atomic number Z
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angular integrals An and are common in position and
momentum spaces. On the other hand, the exchange
terms depend on the radial overlap integrals S(a, b) in
position space and S�(a, b) in momentum space. How-
ever, we find that S(a, b)=S�(a, b) for two orbitals with
la=lb, when we recall the closure relation [14] of the
spherical Bessel functions,

2a2

p

Z1

0

drr2jl arð Þjl brð Þ ¼ d a� bð Þ; ð18Þ

together with Eq. (16). Therefore, the differences in the
qn and q�n values and the resultant interelectronic angle
properties arise only from the exchange terms of two
orbitals with different azimuthal quantum numbers.

The inclusion of the electron correlation changes the
interelectronic angle densities A�(h�12) from the Hartree–
Fock results. In the literature, a correlated ground-state
A�(h�12) is found [5] only for the Li atom. In this atom, the
electron correlation works to modify the uniform Har-
tree–Fock density in such a manner that the density
migrates from a large h�12 (>p/2)) to a small h�12 (<p/2).
The average interelectronic angle <h�12> was calculated
[5] to be 89.1�, which is smaller than the Hartree–Fock
value of 90�. Thus the correlated electrons prefer parallel
momenta to perpendicular or opposite momenta. Cor-
respondingly, the correlated <cosh�12>=q�1 value is re-
ported [5] as 0.04772. In position space, the electron
correlation was found [7] to increase the average angles
<h�12> and to decrease the negative <cosh12>=q1
values for He–Be. The correlation contribution in mo-
mentum space is opposite to that in position space,
as long as the Li atom is concerned. Correlated studies
on the interelectronic angle densities of other atoms are
now in progress in our laboratory.

Summary

The Hartree–Fock interelectronic angle densities A�(h�12)
in momentum space have been reported for the 102
atoms from He to Lr in their ground states. In the first
three atoms, He, Li, and Be, A�(h�12) is uniform
independent of h�12, while in the remaining 99 atoms,
A�(h�12) is larger for a large h�12 than for a small h�12.
Accordingly, the average interelectronic angles <h�12>
in momentum space are 90� precisely for the three atoms
and greater than 90� for the 99 atoms. The effect of the
electron correlation was discussed for the Li atom.
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